The Lanczos Method for Parameterized Symmetric Linear Systems with Multiple Right-Hand Sides

نویسندگان

  • Karl Meerbergen
  • Zhaojun Bai
چکیده

The solution of linear systems with a parameter is an important problem in engineering applications, including structural dynamics, acoustics, and electronic circuit simulations, and in related model order reduction methods such as Padé via Lanczos. In this paper, we present a Lanczos-based method for solving parameterized symmetric linear systems with multiple right-hand sides. We show that for this class of applications, a simple deflation method can be used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Algorithms for Symmetric Linear Systems with Multiple Right-hand Sides

In this paper, we investigate the block Lanczos algorithm for solving large sparse symmetric linear systems with multiple right-hand sides, and show how to incorporate deeation to drop converged linear systems using a natural convergence criterion, and present an adaptive block Lanczos algorithm. We propose also a block version of Paige and Saun-ders' MINRES method for iterative solution of sym...

متن کامل

New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs

In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...

متن کامل

Deflated and Restarted Symmetric Lanczos Methods for Eigenvalues and Linear Equations with Multiple Right-Hand Sides

A deflated restarted Lanczos algorithm is given for both solving symmetric linear equations and computing eigenvalues and eigenvectors. The restarting limits the storage so that finding eigenvectors is practical. Meanwhile, the deflating from the presence of the eigenvectors allows the linear equations to generally have good convergence in spite of the restarting. Some reorthogonalization is ne...

متن کامل

Extending the eigCG algorithm to nonsymmetric Lanczos for linear systems with multiple right-hand sides

The technique that was used to build the eigCG algorithm for sparse symmetric linear systems is extended to the nonsymmetric case using the BiCG algorithm. We show that, similarly to the symmetric case, we can build an algorithm that is capable of computing a few smallest magnitude eigenvalues and their corresponding left and right eigenvectors of a nonsymmetric matrix using only a small window...

متن کامل

Block Algorithms for Quark Propagator Calculation

Computing quark propagators in lattice QCD is equivalent to solving large, sparse linear systems with multiple right-hand sides. Block algorithms attempt to accelerate the convergence of iterative Krylov-subspace methods by solving the multiple systems simultaneously. This paper compares a block generalisation of the quasi-minimal residual method (QMR), Block Conjugate Gradient on the normal eq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Matrix Analysis Applications

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2010